Single Sample Confidence Interval Calculator

Single Sample Confidence Interval Calculator (T Statistic)

Single Sample Confidence Interval Calculator (T Statistic)

Enter Your Data

Confidence Interval Formula: \[ \text{CI} = \bar{x} \pm t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} \]

Results

Measure Value
Sample Mean (\(\bar{x}\))
Sample Standard Deviation (s)
Sample Size (n)
Standard Error (\(s/\sqrt{n}\))
Degrees of Freedom (df = n-1)
t Critical Value (\(t_{\alpha/2, n-1}\))
Margin of Error
Confidence Interval

Interpretation

Step-by-Step Calculation

Single Sample Confidence Interval Calculator Guide

Single Sample Confidence Interval Calculator Guide

How to Use the Single Sample Confidence Interval Calculator

  1. Select the Data Format:
    • Raw Data: Enter comma-separated numbers (e.g., 85, 90, 78).
    • Summary Statistics: Enter sample mean, standard deviation, and sample size.
  2. Enter your data in the provided input fields based on the selected format.
  3. Choose a Confidence Level (90%, 95%, or 99%) from the dropdown.
  4. Click “Calculate Confidence Interval” to compute the results.
  5. View the results, including:
    • Sample Mean (\(\bar{x}\)).
    • Sample Standard Deviation (\(s\)).
    • Sample Size (\(n\)).
    • Standard Error (\(\frac{s}{\sqrt{n}}\)).
    • Degrees of Freedom (\(n-1\)).
    • t Critical Value (\(t_{\alpha/2, n-1}\)).
    • Margin of Error.
    • Confidence Interval.
  6. Review the step-by-step calculation and interpretation for detailed insights.
  7. Use the “Reset” button to clear all inputs and start over.

Key Features of the Single Sample Confidence Interval Calculator

Flexible Input Options

  • Supports both raw data (comma-separated values) and summary statistics input.
  • Pre-filled example data for quick testing (e.g., 85, 90, 78, …).
  • Allows selection of confidence levels (90%, 95%, 99%).

Accurate Calculations

  • Implements the t-distribution confidence interval formula: \[\text{CI} = \bar{x} \pm t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}\].
  • Uses a built-in t-table for accurate critical values based on degrees of freedom and confidence level.
  • Handles small sample sizes appropriately using the t-distribution.
  • Calculates sample mean and standard deviation automatically for raw data input.

Detailed Results

Displays:

  • Sample Mean (\(\bar{x}\)).
  • Sample Standard Deviation (\(s\)).
  • Sample Size (\(n\)).
  • Standard Error (\(\frac{s}{\sqrt{n}}\)).
  • Degrees of Freedom (\(n-1\)).
  • t Critical Value (\(t_{\alpha/2, n-1}\)).
  • Margin of Error.
  • Confidence Interval as a range.

Step-by-Step Solution

Provides a detailed breakdown of the calculation process in 5 steps:

  • Gather sample statistics (mean, standard deviation, sample size).
  • Calculate standard error.
  • Find t critical value.
  • Calculate margin of error.
  • Compute confidence interval.

Interpretation and Error Handling

  • Provides clear interpretation of the confidence interval, explaining its meaning and implications.
  • Includes notes for small sample sizes (\(n < 30\)) to justify t-distribution use.
  • Handles errors gracefully with messages for invalid inputs (e.g., insufficient data points, negative standard deviation).